288 research outputs found

    Sub-Riemannian Fast Marching in SE(2)

    Full text link
    We propose a Fast Marching based implementation for computing sub-Riemanninan (SR) geodesics in the roto-translation group SE(2), with a metric depending on a cost induced by the image data. The key ingredient is a Riemannian approximation of the SR-metric. Then, a state of the art Fast Marching solver that is able to deal with extreme anisotropies is used to compute a SR-distance map as the solution of a corresponding eikonal equation. Subsequent backtracking on the distance map gives the geodesics. To validate the method, we consider the uniform cost case in which exact formulas for SR-geodesics are known and we show remarkable accuracy of the numerically computed SR-spheres. We also show a dramatic decrease in computational time with respect to a previous PDE-based iterative approach. Regarding image analysis applications, we show the potential of considering these data adaptive geodesics for a fully automated retinal vessel tree segmentation.Comment: CIARP 201

    ARTS mediates apoptosis and regeneration of the intestinal stem cell niche

    Get PDF
    Stem cells (SCs) play a pivotal role in fueling homeostasis and regeneration. While much focus has been given to self-renewal and differentiation pathways regulating SC fate, little is known regarding the specific mechanisms utilized for their elimination. Here, we report that the pro-apoptotic protein ARTS (a Septin4 isoform) is highly expressed in cells comprising the intestinal SC niche and that its deletion protects Lgr5(+) and Paneth cells from undergoing apoptotic cell death. As a result, the Sept4/ARTS(-/-) crypt displays augmented proliferation and, in culture, generates massive cystic-like organoids due to enhanced Wnt/ÎČ-catenin signaling. Importantly, Sept4/ARTS(-/-) mice exhibit resistance against intestinal damage in a manner dependent upon Lgr5(+) SCs. Finally, we show that ARTS interacts with XIAP in intestinal crypt cells and that deletion of XIAP can abrogate Sept4/ARTS(-/-)-dependent phenotypes. Our results indicate that intestinal SCs utilize specific apoptotic proteins for their elimination, representing a unique target for regenerative medicine

    Apoptosis screening of human chromosome 21 proteins reveals novel cell death regulators

    Get PDF
    The functional analysis of chromosome 21 (Chr21) proteins is of great medical relevance. This refers, in particular, to the trisomy of human Chr21, which results in Down’s syndrome, a complex developmental and neurodegenerative disease. In a previous study we analyzed 89 human Chr21 genes for the subcellular localization of their encoded proteins using a transfected-cell array technique. In the present study, the results of the follow-up investigation are presented in which 52 human Chr21 genes were over-expressed in HEK cells using the transfected-cell array platform, and the effect of this protein over-expression on the induction of apoptosis has been analyzed. We found that the over-expression of two Chr21 proteins (claudin-14 and -8) induced cell death independent of the classic caspase-mediated apoptosis. Our results strongly suggest the functional involvement of claudins in the control of the cell cycle and regulation of the cell death induction mechanism

    Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD

    Get PDF
    Pathogenic variants in INPP5E cause Joubert syndrome (JBTS), a ciliopathy with retinal involvement. However, despite sporadic cases in large cohort sequencing studies, a clear association with non-syndromic inherited retinal degenerations (IRDs) has not been made. We validate this association by reporting 16 non-syndromic IRD patients from ten families with bi-allelic mutations in INPP5E. Additional two patients showed early onset IRD with limited JBTS features. Detailed phenotypic description for all probands is presented. We report 14 rare INPP5E variants, 12 of which have not been reported in previous studies. We present tertiary protein modeling and analyze all INPP5E variants for deleteriousness and phenotypic correlation. We observe that the combined impact of INPP5E variants in JBTS and non-syndromic IRD patients does not reveal a clear genotype–phenotype correlation, suggesting the involvement of genetic modifiers. Our study cements the wide phenotypic spectrum of INPP5E disease, adding proof that sequence defects in this gene can lead to early-onset non-syndromic IRD

    Supersymmetry without R-Parity and without Lepton Number

    Get PDF
    We investigate Supersymmetric models where neither R parity nor lepton number is imposed. Neutrino masses can be kept highly suppressed compared to the electroweak scale if the Ό\mu-terms in the superpotential are aligned with the SUSY-breaking bilinear BB-terms. This situation arises naturally in the framework of horizontal symmetries. The same symmetries suppress the trilinear R parity violating terms in the superpotential to an acceptable level.Comment: 18 pages, harvma

    Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction

    Full text link
    A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments

    Spectrum of PEX1 and PEX6 variants in Heimler syndrome

    No full text
    Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6, both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G>A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families. Haplotype analysis suggests a common founder variant. All families segregated at least one missense variant, consistent with the hypothesis that HS results from genotypes including milder hypomorphic alleles. The clinical overlap of HS with the more common Usher syndrome and lack of peroxisomal abnormalities on plasma screening suggest that HS may be under-diagnosed. Recognition of AI is key to the accurate diagnosis of HS

    Rapid geomagnetic changes inferred from Earth observations and numerical simulations

    Get PDF
    Extreme variations in the direction of Earth’s magnetic field contain important information regarding the operation of the geodynamo. Paleomagnetic studies have reported rapid directional changes reaching 1° yr⁻Âč, although the observations are controversial and their relation to physical processes in Earth’s core unknown. Here we show excellent agreement between amplitudes and latitude ranges of extreme directional changes in a suite of geodynamo simulations and a recent observational field model spanning the past 100 kyrs. Remarkably, maximum rates of directional change reach ~10° yr⁻Âč, typically during times of decreasing field strength, almost 100 times faster than current changes. Detailed analysis of the simulations and a simple analogue model indicate that extreme directional changes are associated with movement of reversed flux across the core surface. Our results demonstrate that such rapid variations are compatible with the physics of the dynamo process and suggest that future searches for rapid directional changes should focus on low latitudes

    Genotype–Phenotype Correlation in DFNB8/10 Families with TMPRSS3 Mutations

    Get PDF
    In the present study, genotype–phenotype correlations in eight Dutch DFNB8/10 families with compound heterozygous mutations in TMPRSS3 were addressed. We compared the phenotypes of the families by focusing on the mutation data. The compound heterozygous variants in the TMPRSS3 gene in the present families included one novel variant, p.Val199Met, and four previously described pathogenic variants, p.Ala306Thr, p.Thr70fs, p.Ala138Glu, and p.Cys107Xfs. In addition, the p.Ala426Thr variant, which had previously been reported as a possible polymorphism, was found in one family. All affected family members reported progressive bilateral hearing impairment, with variable onset ages and progression rates. In general, the hearing impairment affected the high frequencies first, and sooner or later, depending on the mutation, the low frequencies started to deteriorate, which eventually resulted in a flat audiogram configuration. The ski-slope audiogram configuration is suggestive for the involvement of TMPRSS3. Our data suggest that not only the protein truncating mutation p.T70fs has a severe effect but also the amino acid substitutions p.Ala306Thr and p.Val199Met. A combination of two of these three mutations causes prelingual profound hearing impairment. However, in combination with the p.Ala426Thr or p.Ala138Glu mutations, a milder phenotype with postlingual onset of the hearing impairment is seen. Therefore, the latter mutations are likely to be less detrimental for protein function. Further studies are needed to distinguish possible phenotypic differences between different TMPRSS3 mutations. Evaluation of performance of patients with a cochlear implant indicated that this is a good treatment option for patients with TMPRSS3 mutations as satisfactory speech reception was reached after implantation
    • 

    corecore